令和3年度仙台市既存放射光施設活用事例創出事業

吸着式蓄熱材ハスクレイ吸着原理の解析 -地域熱エネルギー循環事業の確立-

1. 測定体制

6. 結果-X線イメージング-

2. 背景

7. 測定方法-SAXS・USAXS-

3. スケジュール

8. 結果-SAXS・USAXS-

4. 測定目的

- 9. まとめ
- 5. 測定方法-X線イメージング- 10.今後の課題

測定体制

組織	役割	
東日本機電開発	研究代表機関	
岩手大学	共同研究 測定・解析指導	
産業技術総合研究所(GⅢ) 石原産業(GⅠ、GⅡ)	サンプル提供	
九州シンクロトロン光研究センター 高輝度光科学研究センター	測定 解析協力	
岩手県 ILC 推進局 いわて産業振興センター	企業サポート	

背景~ハスクレイとは~

微細な細孔構造による吸湿発熱機構をもつ。

放熱:細孔内に水分子が吸着され、凝縮熱によって発熱する。

蓄熱:熱により細孔内の水が気化し乾燥する。

特	徴	
	10.100℃の低温熱 を回収できる	~

- 40~100 ℃の15温熱を凹収でさる
- 何度も蓄熱、放熱できる
- 熱エネルギーを安全に長期保存可能

● 蓄熱密度が高い

表1 蓄熱材の性能蓄熱材温度
範囲蓄熱量
(kJ/L)ハスクレイGⅢ40 °C
以上567改質ゼオライト80 °C
以上439

グレード(G)の違い 比表面積:GI750~850 m²/g、GI 550~650 m²/g、GI 450~550 m²/g

背景~現状の課題~

実証試験において放熱性能が45%しか発揮できていない

ハスクレイの蓄放熱性能を安定して得ることが必要

ハスクレイの三次元的構造や吸脱着メカニズムを解明し、 さらに放熱性能を向上させたい スケジュール

サンプル作成

X線イメージング(SAGA-LS、BL07、1日) ハスクレイの内部情報を可視化することで、乾湿状態による内部構 造の差異情報を得る。

SAXS・USAXS(SPring-8、BL19B2、測定代行2時間) 材質・乾湿状態を変えたハスクレイを測定することで、空隙サイズ の変化や分布の情報を得る。

測定方法-X線イメージング-

サンプル条件 グレード:GI、GⅡ、GⅢ 形状:φ2mm、棒状 状態:Wet(95%Rhにて吸湿)、 Dry(乾燥状態)

図3 高速マイクロCTシステム の概略図(出典:米山.2021)

図4 サンプル取付

測定条件

エネルギー:10~15 keV CT計測時間:約1時間/1サンプル (2秒露光×1500枚) 空間分解能:3ミクロン 視野:2×2 mm²

図5 サンプルセッティング

図6 実験の様子

ハスクレイは密度の高い領域と密度の低い領域で構成されている GI、GIと比較して、GIIはひびや大きな空隙が多数みられる

Dry

Wet

GI、GIには点状の高密度粒子がみられ、GIに特に多い

Dry

表2 ハスクレイの密度比較

		Density (g/cm ³)
C I	Wet	3.4
U I	Dry	3.3
СШ	Wet	3.0
GII	Dry	2.9
GIII	Wet	3.4
GIII	Dry	3.5

面積:2mm²

ハスクレイはWet(吸湿)状態において密度が増加する。 GⅢは逆に、Dry(乾燥)状態において密度が増加した。

表3 ハスクレイ内の密度比較

			Density (g/cm ³)
	Wet	А	3.0
GI		В	3.6
U I	Dry	А	2.7
		В	3.3
	Wet	А	2.6
СШ		В	3.2
UII	Dry	А	2.6
		В	3.0
	Wet	А	3.3
СШ		В	3.9
UIII	Dry	А	3.5
		В	4.0

GI・GI共に Wet状態で色の薄い(高密度)領域(B)の密度増加を確認

測定方法-SAXS・USAXS-

サンプル条件 グレード:GI、GI、GII 状態:Wet(95 %Rhにて吸湿)、 Middle(50 %Rhにて吸湿)、Dry(乾燥) 形状:1mm厚、タブレット状 サンプルをビニールで覆い、状態変化 を防いだ。

図8 実験ハッチ内の様子

SAXS

X線エネルギー:18 kev カメラ長:3043 mm 測定qレンジ:約0.06~3 nm⁻¹ 1試料当たりの露光時間:10 秒 ※GIIWet以外は1秒露光にて再測定

USAXS X線エネルギー:18 kev

カメラ長:40814 mm 測定qレンジ:約0.005~0.19 nm⁻¹ 1試料当たりの露光時間:10 秒

測定方法-SAXS・USAXS-

図9 サンプルセッティングの様子

図10 USAXS第3実験ハッチ 出典:SPring-8

結果

図12 HASClay USAXS(10 s)の測定データ ※G1=GIのこと

図13 HASClay SAXS(10 s)の測定データ

サンプルのグレードや状態によって散乱強度に違いがみられる →サンプル間での比較が可能な表れ

結果

図15 各グレードの乾燥状態における測定結果

図16 測定結果から算出した各空隙サイズとその割合 1st=Φ1 nm,2nd=Φ3 nm,3rd=Φ10 nm, 4th=Φ30 nm,5th=Φ90 nm

グレードの違いが散乱強度の差異としてみられた 蓄放熱性能の高いグレードほど、小さい空隙の割合が高い(モデルを立てて解析継続中)

まとめ

✓ X線イメージング測定では…

- ▶ ハスクレイは密度の高い領域、低い領域で構成される。
- ▶ GI・GIの密度の高い領域において、吸湿すると密度が増加する。
- ➤ GⅢはヒビや大きな空隙など、他のグレードと内部構造が異なる。
- ▶ GIIの乾燥吸湿状態の密度変化もGI・GIとは異なっていた。
- ✔ SAXS/USAXS測定では...
 - ▶ ハスクレイのグレードや状態によって散乱強度に差異がみられた。
 - ➢ SAXSとUSAXSのデータを一次元化することで、全体の回折ピークを比較できた。
 - ▶ 性能の高いハスクレイほど、小さい空隙の割合が高かった。

ハスクレイへの水分の吸脱着を観察することで、

「ハスクレイの利用効率を向上させる展開」が可能となる開発指針の獲得が期待される。

今後の課題

- 吸湿/乾燥過程の水分子の挙動を小角散乱にてその場観察
- 複数回使用したハスクレイと未使用のハスクレイの比較

ハスクレイの吸脱着原理をさらに突き詰め、 ハスクレイの性能向上や、熱エネルギー循環システムの効率化を目指す

本研究は、

令和3年度仙台市既存放射光施設活用事例創出事業 により助成を受けて推進したものである。

ここに感謝の意を表する。